北京理工大学联手华曙高科共同研发的3D打印栅极离子推进器源点火成功



 2017年12月4日晚,由工业级3D打印领航企业华曙高科与北京理工大学宇航学院喷气推进实验室合作研发的3D打印栅极离子推进器(Ion Thruster)源点火测试成功!此次测试推力源器宏观参数稳定,束流分布均匀,验证了3D打印离子推力器核心部件的可行性,首次实现了3D打印栅极应用于离子推进器源并成功点火和稳定工作,堪称国内3D打印交叉电推进领域的重大里程碑事件,也标志着华曙高科3D打印技术在航空航天领域的应用迈上了一个新高度。

▲ 3D打印钛合金离子推进器栅极(单层)

▲ 全球首例3D打印栅极离子推进器源点火测试成功

离子推进系统在空间飞行时,一般都采用连续推进方式,一次工作几百上千小时。为了缩短到探测目标的飞行时间和节省推进剂,大多采用离子推进系统推进与其它行星引力辅助作用相结合的轨道转移方式。大功率电推进可应用于通信卫星、深空探测任务、在轨服务飞行器等,小功率电推进可用于商业小卫星变轨、卫星星座编队飞行等,具有重要的社会经济效益。

离子推力器的主要突出优点为:高效率、高比冲、长寿命。每个离子推进器一般有两到三层栅极,其主要作用是加速带电粒子,使推进器获得动能,但传统离子推进器的栅极通过光催化腐蚀法加工,存在工艺流程复杂,加工周期长、材料利用率低、环境污染大等问题。

2016年5月,北京理工大学宇航学院喷气推进实验室与华曙高科合作,采用全球首款开源可定制金属3D打印设备FS271M,经过工艺摸索和多次试制,成功打印了工业级高精度钛合金离子推进器筛网,将加工时间从传统腐蚀法的20小时缩短至2小时,其结构设计可控性强,材料利用率高,也更加环保。

通过测试3D打印Ti64筛网局部微观结构可发现,无论是筛网边缘还是网孔连接处,组织都非常致密、均匀,打印精度符合设计精度要求,这为离子推进器发动机源的成功点火和稳定工作提供了保证。

▲ 3D打印Ti64筛网局部微观结构照片

未来北京理工大学宇航学院喷气推进实验室与华曙将进一步深度合作,瞄准航天产品应用要求,进一步提高3D打印离子发动机性能,最终实现3D打印离子发动机的空间应用。

更多行业资讯信息,请关注3D打印在线(news.3d2013.com)或扫描下方二维码哦

 



上一篇:首件超高还原3D打印兵马俑亮相世界互联网大会
下一篇:返回列表


【本文仅代表作者看法,如有不同观点,欢迎添加3D打印在线微信号(dayinzaixian)进行讨论交流。尊重别人劳动成果,原创文章转载务必注明作者出处】

发布评论    共有  条评论





不登录直接评论

3D打印在线资讯频道 提供有价值的信息参考 http://news.3d2013.com

返回顶部